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“ S P O R T  EQUATIONS FOR A PARTIALLY IONIZED GAS 

I N  AN ELECTRIC FIELD 

by Pe ter  M. Sockol 

Lewis Research Center 

SUMMARY 

Transport equations f o r  a p a r t i a l l y  ionized gas i n  an e l e c t r i c  f i e l d  a r e  
derived from the  Boltzmann equation by t h e  Grad 13-moment method. 
p a r t i c l e  i n t e r a c t i o n s  are described by Coulomb forces ,  while a l l  o ther  p a r t i c l e  
i n t e r a c t i o n s  a r e  described by a r i g i d  e l a s t i c  sphere model. F i r s t  approxima- 
t i o n s  t o  currents ,  s t r e s ses ,  and heat f iuxes  a r e  obtained. The r e s u l t i n g  
t ranspor t  r e l a t i o n s  a r e  s u i t a b l e  f o r  use i n  s i t u a t i o n s  where t h e  e lec t rons  have 
an elevated temperature. 

Charged 

INTRODUCTION 

There a r e  two methods cur ren t ly  i n  use i n  t h e  descr ip t ion  of t r a n s p o r t  
phenomena i n  multicomponent gas mixtures. The Chapman-Enskog method ( r e f s .  1 
and 2 )  produces a s e t  of approximations t o  cur ren ts ,  stresses, and heat  flows. 
The theory i s  r e s t r i c t e d ,  however, t o  small departures from l o c a l  equilibrium; 
i n  p a r t i c u l a r  t he re  i s  no provision f o r  assigning separate  temperatures t o  t h e  
components of t he  mixture. The Grad method ( r e f s .  3 t o  8) r e s u l t s  i n  a set of 
p a r t i a l  d i f f e r e n t i a l  equations f o r  t h e  coe f f i c i en t s  i n  t h e  expansions of t h e  
species  d i s t r i b u t i o n  funct ions about l o c a l  Maxwellians. The f irst  f e w  expan- 
s ion coe f f i c i en t s  a r e  simply r e l a t e d  t o  currents ,  s t r e s s e s ,  and heat  f luxes.  
This theory permits g r e a t e r  departures from equilibrium than does t h e  Chapman- 
Enskog so lu t ion  and, moreover, permits t h e  assignment of d i f f e r e n t  temperatures 
t o  each component. For s m a l l  departures from t h e  l o c a l  Maxwellians, a s e r i e s  
of approximations can be generated f o r  currents ,  stresses, and hea t  flows from 
t h e  d i f f e r e n t i a l  equations. 

I n  t h e  presence of an e l e c t r i c  f i e l d ,  t h e  electrons i n  an ionized gas are 
usual ly  character ized by a higher temperature than t h e  heavier pa r t i c l e s .  Pre- 
vious treatments have been l i m i t e d  t o  e i t h e r  such l o w  degrees of ion iza t ion  
t h a t  only electron-neutral  and ion-neutral  i n t e r a c t i o n s  need be considered 
( r e f s .  9 and 10) or t o  such high degrees of ion iza t ion  t h a t  t h e  gas may be 
t r e a t e d  as f u l l y  ionized (refs. 8 and 11). I n  t h e  present work, t h e  descr ip-  
t i o n  of t h e  general  n-component mixture obtained by t h e  Grad method ( r e f s .  4 
t o  7 )  i s  worked out i n  d e t a i l  f o r  a three-component mixture of e lec t rons ,  ions,  
and n e u t r a l  atoms. A f i rs t  approximation t o  cur ren ts ,  s t r e s ses ,  and heat  flows 
i s  obtained through an i t e r a t i v e  scheme. 



There i s  some quest ion as t o  t h e  a p p l i c a b i l i t y  of t h e  standard c o l l i s i o n  
i n t e g r a l  ( s ee  eq. ( 2 ) )  i n  t h e  case of Coulomb i n t e r a c t i o n s  because of t h e  long 
range nature  of t hese  forces .  Comparisons with t h e  usua l ly  prefer red  Fokker- 
Planck treatment,  however, show good agreement. The second approximation t o  
t h e  e l e c t r i c a l  conduct ivi ty  as obtained by t h e  Chapman-Enskog method d i f f e r s  
by only 2 .1  percent  from t h e  Fokker-Planck value ( r e f s .  11 and 1 2 ) ,  while t h e  
value obtained by t h e  13-moment method ( r e f .  8) d i f f e r s  by 2.6 percent from 
t h a t  obtained with t h e  Fokker-Planck equation. The problem of c o l l e c t i v e  phe- 
nomena, such as t h e  i n t e r a c t i o n  of a high-speed e l ec t ron  with i t s  wake of 
plasma o s c i l l a t i o n  (ref. 13), i s  not included i n  t h e  previous treatments and 
has been neglected herein.  

Cartesian t enso r  nota t ion  i s  used throughout t h i s  report .  Greek sub- 
s c r i p t s  a r e  used f o r  t enso r  ind ices  with summation on double subscr ipts .  
English supe r sc r ip t s  r e f e r  t o  species.  

THEORY 

The theory has been t r e a t e d  i n  d e t a i l  elsewhere (refs. 3 t o  7) .  A b r i e f  
resum; i s  given here. The d i s t r i b u t i o n  func t ion  f J  f o r  each species  i s  
assumed t o  s a t i s f y  t h e  Boltzmann equation 

where 5, i s  t h e  p a r t i c l e  ve loc i ty ,  % t h e  pos i t ion ,  and Ea t h e  e l e c t r i c  
f i e l d .  The c o l l i s i o n  i n t e g r a l s  Ijk are given by 

Ijk = f [fj(Tt)fk(ri) - f j ( l ) f k ( z l q g b  db de dz1 ( 2 )  
3 

where g = / E 1  - E l ,  b i s  t h e  impact parameter, E t h e  azimuthal angle,  and 
t t , t +  a r e  t h e  f i n a l  values of t h e  v e l o c i t i e s  t,tl a f t e r  an encounter. (All 
e 3  -++ 

symbols a r e  def ined i n  appendix A. ) 

The f j  are expanded i n  Hermite polynomials (ref. 14)  about l o c a l  

Maxwellian d i s t r i b u t i o n s  f j  (O). I n  t h e  13-moment approximation, f j  takes  
t h e  form 

where 

2 



I n  t h e s e  equations, u i  i s  t h e  d r i f t  ve loc i ty  of species  j with r e spec t  t o  
t h e  mean m a s s  ve loc i ty  wa, p i p  
reduced hea t  flux. 

i s  t h e  nonhydrostatic stress, and % i s  a 

I n  order f o r  t h e  approximation of equation (3) t o  be valid,  t h e  expansion 
c o e f f i c i e n t s  must be s m a l l  compared t o  unity. I n  p a r t i c u l a r  t h i s  r equ i r e s  t h a t  

ua j << (kTj/mj) l l2  and 

Equations f o r  nJ ,  ' j j  p , s, p i p ,  and e are generated by t ak ing  moments 

of t h e  Boltzmann equation. The higher moments and t h e  c o l l i s i o n  in t egya l s  
occurring i n  t h e s e  equations are .evaluated i n  terms of preceding q u a n t i t i e s  by- 
means of t h e  approximation t o  f J  i n  equation (3). The r e s u l t  f o r  an 
m-component mixture is  13m.coupled.pa@ial. d i f f e T e n t i a 1  equations i n  t h e  
13m dependent variables nJ, p j ,  ui, P&, and R$ 

The c o l l i s i o n  i n t e g r a l s  have been considered i n  d e t a i l  i n  t h e  l i t e r a t u r e  
(refs. 3 t o  7 ) ,  and t h e  results f o r  e l a s t i c  c o l l i s i o n s  are l i s t e d  i n  convenient 
form i n  reference 5. For t h e  Coulomb i n t e r a c t i o n  between charged p a r t i c l e s ,  
t h e  i n t e g r a t i o n  over t h e  impact parameter b has been c u t  o f f  a t  t h e  Debye 
l e n g t h  ( r e f .  15) : 

The in t eg ra t ion  over ve loc i ty  i s  taken from reference 5 with a s m a l l  co r r ec t ion  
(see appendix E). The r i g i d  e l a s t i c  sphere model has been used f o r  a l l  o t h e r  
i n t e rac t ions .  The c o l l i s i o n  terms, i n  general ,  are exceedingly complex. The 
following r e s t r i c t i o n s ,  however, result i n  a considerable reduct ion i n  com- 
p l e x i t y  f o r  a plasma: 

3 



Furthermore, as i n  re ferences  5, 7, and 8, a l l  terms quadra t ic  i n  u i ,  -pip, ~2 
have been neglected. 

MOMENT EQUATIONS 

When t h e  moment equations f o r  m j ,  mjc,, and 1 / 2  mjc2 are summed over 
t h e  species ,  t h e  conservation equations for t h e  mixture are obtained: 

Continuity:  

Momentum: 

Energy : 

where . 

r j  Y E n j  uu j (18) 

' j  The 13 moment equations for each spec ies  are generated from mJ, m cy, 

Continuity : 
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Momentum: 

where equation (13) is used to define a new force 

Energy : 

Stress : 

where for any second-rank tensor &p 

P a p 1  ; &p + Apa - $ A W S a p )  

Heat flux : 

Collision coefficients for the system of electrons, ions, and neutral atoms 
are listed in appendix B. 

5 



In writing the collision terms as they appear on the right sides of equa- 
tions (23) and (24) and in appendix B, an order-of-magnitude analysis has been 
used to discard several terms. The complete analysis is too complicated to be 
reproduced here, but a sample portion is given in appendix C. 
is that the collision terms appear in their given. forms, and the electron 
stress and heat flux equations uncouple from those for the ions and atoms pro- 
vided that certain inequalities are satisfied. The most stringent restriction 
is given by 

The end result 

Qea Te 112 me 112 
z- Q1" (5) (F) 

The collision coefficients corresponding to the neglected terms are set equal 
to zero in appendix B. 

TRANSPORT APPROXIMATIONS 

It has been proposed that approximations to currents, stresses, and heat 
fluxes be generated from the moment equations by an iterative scheme (refs. 1, 
6, 7, and 8). Let T and L he a macroscopic time and length characterizing 
a flow. It is assumed that T-1 and wL-1 are small compared with the re- 
laxation frequencies appearing as coefficients on the right sides of the moment 
equations. In addition, it is assumed that gradients of currents, stresses, 
and heat flows are small. 
equations is obtained for F;, pyh, J and F$! as functions of nj, TJ, E+-, and 
w and their gradients. Higher approximations are obtained by substituting 
the value derived in the previous approximation into those terms originally 
neglected on the left side of the equations. 

Een,.as a first approximation, a set o$ algebraic 

r 

The first approximations are now considered in detail. Under the preced- 
ing assumptions equations (20), ( 2 3 ) ,  and (25) become 

with 
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The vector equations (27) are not independent. 
mass velocity wr 

As the r$ are referred t o  the 

C k k  m r r = O  (31) 
k 

Inverting equations (28) gives 

where the viscosities p are given by 

7 pe = - Pe 
wee 

,aapi - &apa 
&iwaa - &awai pi = 

and the coefficients flj by 

1 fie = (uee)-l 

.i ~ waa(wiiwaa - wiawai)-l 

Sca = - x l  wai - 
waa 

( 3 5 )  

7 

6 



where the thermal conductivities hj are given by 

1 A e = 5 k L  e 
2 me ,ee 

h i = - -  5 k vaapi - viapa 
2 ma ,ii,aa - ,ia,ai 

m 

the coefficients 7' by 

and the coefficients D by 

,aa + ,ia 

,ii + ,ai 
,ii,aa - ,ia,ai 

D1 = 
,iivaa - 

Da = 

The final step is the inversion of equations (27) with equation (31) used 
in place of the ion eqyation. 
reduced heat fluxes I$!. The following diffusion equations result: 

Equations (37) to (39) are used to eliminate the 

8 



r a = - -  e i  na q - - ~ d F  1 Y vi ,i + na 

where t h e  forces  d; a r e  defined by 

and the  t ranspor t  coe f f i c i en t s  a r e  given by 

It has been assumed t h a t  

e ea << ,ivia n v  me - me << tlea - ne << n i  
ma ma 

I n  general  t he  term i n  d; i n  equation (43) i s  negl igible .  

S m  OF RESULTS 

(44) 

(45) 

The 13 moment t ranspor t  equations have been obtained for a p a r t i a l l y  
ionized gas i n  an e l e c t r i c  f i e ld .  A l l  p a r t i c l e  i n t e rac t ions  have been 
described i n  terms of binary co l l i s ions ;  t h e  shielded Coulomb model has been 
used f o r  those between charged p a r t i c l e s  and t h e  r i g i d  e l a s t i c  sphere model 
f o r  all in t e rac t ions  involving neu t r a l  atoms. According t o  Grad these  equa- 

9 



tions should be valid even in cases where there is an appreciable variation in 
properties over the distance of a mean free path. 

First approximations to currents, stresses, and heat fluxes have been ob- 
tained from the 13 moment equations. These approximations include expressions 
for diffusion coefficients, viscosities, and thermal conductivities and exhibit 
cross-coupling between currents and heat fluxes. The resultant transport rela- 
tions are suitable for use in situations where the electrons have an elevated 
temperature. 

National Aeronautics and Space Administration 
Lewis Research Center 

Cleveland, Ohio, February 19, 1964 
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APPENDIX A 

SYMBOLS 

expansion coe f f i c i en t  i n  d i s t r i b u t i o n  function, eq. ( 3 ) ,  where a j (n)  
a n = 0, 1, 2, 3 

b impact parameter 

c, pecul ia r  veloci ty ,  tu - wa 

D j coef f ic ien t ,  eqs. (42)  

d j d i f fus ion  force,  eqs. (46) 

E a  e l e c t r i c  f i e l d  

a 

e 

e j 

h 

Ja 

e lec t ronic  charge 

charge on p a r t i c l e  of species  j 

force,  eq. ( 2 1 )  

d i s t r i b u t i o n  funct ion of species  

magnitude of  r e l a t i v e  ve loc i ty  

Debye length,  eq. (10) 

c o l l i s i o n  in t eg ra l ,  eq. ( 2 )  

e l e c t r i c  current  

k Boltzmann constant 

m j  mass of p a r t i c l e  of species  j 

n j number density 

P j  stress tensor  

P j pressure,  1/3 P& 

nonhydrostatic s t r e s s  tensor ,  P& - pj8,p 

r i g i d  sphere c o l l i s i o n  cross  sec t ion  

hea t  f l u x  

p:p 

Qjk 

e 
R: reduced heat  f lux ,  - 5/2 p j u i  

11 
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T j 

t 

va 

wa 

E 

A 

P 

kinetic temperature of species j 

time 

diffusion velocity 

dimensionless peculiar velocity 

mean mass velocity 

position vector 

ion charge in units of e 

coefficient, eq. ( 20) 

coefficient, eq. (22) 

diffusion current, njui 

coefficient, eq. (25) 

Kronecker delta 

azimuthal angle 

coefficient, eqs. (47) 

coefficient, eq. (20) 

coefficient, eqs. (47) 

collision parameter, eqs. (B22) to (B25) 

parameter, eqs. (B26) to (B28) 

thermal conductivity, eqs. (40) 

viscosity, eqs. ( 3 5 )  

coefficient, eq. (25) 

particle velocity 

coefficient, eqs. (36) 

mass density of mixture 

charge density of mixture 

coefficient, eqs. (41) 

12 



I 

LUjk coefficient, eq. (23) 

Subscripts: 

a,P,r,A tensor indices 

Superscripts: 

a atom 

e electron 

i ion 

j , k  any species 

( ' >  velocities after collision 

13 



APPENDIX B 

COLLISION COEFFICIENTS 

The c o l l i s i o n  c o e f f i c i e n t s  appearing i n  t h e  spec ie s  moment equations f o r  
t h e  electron,  ion,  neutral-atom system are as follows: 

= K i a n i  + 16 Kaana 

(,ei &e ,ea 0 )  

5 

1 4  

I 



where 

Kaa = & Qaa(Z)"' 

Aee zh 



T“ Aii = - A 
ZTe 

and r is Euler’s constant, 0.577. 

It should be noted that equation (A6) of reference 5 should be corrected 
to read 

k-1 lm yk-le-y l o g  [ 1 + (z r ]dy  = Z(k - 1)!Re 

+ 
k- 2 k- 2 c c -54-1 (P - q)! 
q=o P=q 
e 2  

With this correction the last two equations in section (5-3) of refer- 
ence 5 become 

2”+’(k-1)3 
a’s = 1.3 . . (2k + 1) 

k zkfl(k - l)! 
brs 1 . 3 .  . . (2k + 1) 
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APPENDIX c 

fL+ 

% 
- 

SIMPLDICATION O F  HEAT-FLUX EQUATIONS 

- v  iavai kTa Pe viivaa ~ = - -  pi + via  y i a ( n a  + n i )  

I n  t h e  evaluation of t h e  c o l l i s i o n  i n t e g r a l s  i n  the ion h e a t - f l u  equa- 
t i o n  t h e s e  two terms appear: 

and 

The first term w i l l  be neg l ig ib l e  compared with t h e  second i f  t h e  following 
inequa l i ty  i s  s a t i s f i e d :  

where pe = n e k F  and I n  Aii has been assumed 
In A. 

t o  be of t h e  same order  as 

Kee Aiini + Kiana 
z- 

Under conditions i n  which t h e  moment equations are assumed t o  hold 
Equations ( C E )  and ( C 3 )  l e ad  t o  these  two i n e q u a l i t i e s  i n  the two densi ty  
ranges : 

ne x Zni. 

17 



These r e l a t i o n s  have been presumed t o  hold. 

Analyses similar t o  t h i s  one have been used t o  simplify t h e  o t h e r  moment 
equat ions.  

18 
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